
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Numerical assessment of subgrid scale models for scalar transport in large-eddy simulations of hydrogen-enriched fuels
A comparison of two different models addressing the scalar transport in large-eddy simulations is conducted for a non-reacting jet and an experimental flame. A simple approach based on a gradient diffusion closure is compared against the linear-eddy model in the context of hydrogen-enriched non-reacting fuel jets and flames burning hydrogen-enriched mixtures. The results show that the gradient diffusion model is not valid as a subgrid scale model for large-eddy simulations of mixtures containing hydrogen. It produces unphysical scalar fields with unrealistic temperature distributions. Approaches based on the linear-eddy model can be used instead to obtain appropriate representation of the scalar field and more accurate predictions of the scalar transport and the temperature field.
- Lancaster University United Kingdom
- Science and Technology Facilities Council United Kingdom
- Daresbury Laboratory United Kingdom
- Daresbury Laboratory United Kingdom
620
620
