Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-objective optimization of an ocean thermal energy conversion system for hydrogen production

Authors: Pouria Ahmadi; Marc A. Rosen; Ibrahim Dincer; Ibrahim Dincer;

Multi-objective optimization of an ocean thermal energy conversion system for hydrogen production

Abstract

Abstract Hydrogen can be produced in a relatively environmentally benign manner (depending on the source of the input energy) via splitting water by photocatalysis, thermochemical cycles and electrolysis, and hydrogen production by proton exchange membrane (PEM) electrolysis has numerous advantages. Ocean thermal energy conversion (OTEC) usually incorporates a low-temperature Rankine cycle which boils a working fluid such as ammonia to generate a vapor which drives a turbine to generate electricity, and is then condensed back to a liquid in a continuous process. Here, a comprehensive thermodynamic analysis and multi-objective optimization are reported of an OTEC system to produce hydrogen using electrolysis. A multi-objective optimization method based on a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) is applied to determine the best design parameters for the system. The total cost rate of the system is minimized while the cycle exergy efficiency is maximized using an evolutionary algorithm. To provide additional insights, the Pareto frontier is shown for the multi-objective optimization. In addition, a closed form equation for the relationship between exergy efficiency and total cost rate is derived. A sensitivity analysis is performed to assess the effects of several design parameters on the system.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 1%
Top 10%
Top 10%