
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modeling of a SOFC-HT battery hybrid system for optimal design of off-grid base transceiver station

handle: 20.500.14243/347144
This work aims at the development of a simulation tool to optimize the design of a hybrid fuel cell/battery system to supply ICT equipment. In the framework of the ONSITE European project, which deals with a hybrid (fuel cell and batteries) RBS (Radio Base Stations) supply system, a modeling activity is carried out to optimize the system operations. The developed algorithms separately implement a Solid Oxide Fuel Cell system and a high temperature Sodium Nickel Chloride battery for design purpose and collect them in a unique model for devices interaction (i.e. power production, storage, and control). Moreover, a Computational Fluid Dynamics battery model is developed to analyse the heat transfer while the SOFC stack generates excessive heat during operation and outlet hot gases can be effectively used. Since the SNC batteries need heat during charging process (to maintain their operating temperature) and, conversely, the reactions are exothermic in discharge mode, the described approach aims at combining SNC batteries with micro-CHP unit to optimize the energy flows. The implementation requires several alternative designs and variant analysis to secure proper operation of battery and power generation unit. The model developed and shown in this paper is a dedicated tool for the simulation of the hybrid system proposed and for the optimal designing of each main sub component. © 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
- National Research Council Italy
- National Academies of Sciences, Engineering, and Medicine United States
- Institute of Power Engineering Poland
- National Research Council United States
- Institute for Advanced Energy Technologies Italy
Numeric design tool, Hybrid power generation systems, Simulation algorithm Numeric design tool Hybrid power generation systems SOFC High temperature batteries Telecommunications equipment applications, High temperature batteries, Telecommunications equipment applications, Simulation algorithm, SOFC
Numeric design tool, Hybrid power generation systems, Simulation algorithm Numeric design tool Hybrid power generation systems SOFC High temperature batteries Telecommunications equipment applications, High temperature batteries, Telecommunications equipment applications, Simulation algorithm, SOFC
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
