
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Improved biogas yield from organic fraction of municipal solid waste as preliminary step for fuel cell technology and hydrogen generation

Abstract Biogas utilization in fuel cell technology and hydrogen generation is a modern and economically viable approach. A pretreatment step prior to anaerobic digestion (AD) is obligatory to increase the hydrolysis, solubilize the complex matter present in organic fraction of municipal solid waste (OFMSW) and to achieve higher yield of biogas. This study was intended to find out the effects of thermal, chemical and thermochemical pretreatments on the properties and structure of OFMSW and also on biogas production. There was an increase in chemical oxygen demand of 6.87, 1.61 and 11.60% for thermal, chemical and thermochemical pretreatments, respectively. Also, the content of volatile solids was reduced by 2.36% by thermochemical pretreatment. FTIR, XRD and SEM analysis revealed that these pretreatments also caused chemical and morphological changes on the substrate, as a result reduced its crystallinity and enhanced the rate of hydrolysis. A significant increase of 54% in biogas yield was achieved after thermochemical pretreatment in comparison to untreated OFMSW sample.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
