Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MediaTUMarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MediaTUM
Article . 2018
Data sources: MediaTUM
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coupling SOFCs to biomass gasification – The influence of phenol on cell degradation in simulated bio-syngas. Part II – Post-test analysis

Authors: Hyeondeok Jeong; Michael Geis; Christian Lenser; Sandra Lobe; Stephan Herrmann; Sebastian Fendt; Norbert H. Menzler; +1 Authors

Coupling SOFCs to biomass gasification – The influence of phenol on cell degradation in simulated bio-syngas. Part II – Post-test analysis

Abstract

Anode-supported solid oxide fuel cells (SOFCs) with a state-of-the-art Ni/YSZ anode have been tested in simulated bio-syngas with controlled addition of phenol as a model molecule to study the influence of tars on the degradation of SOFCs operated with gasified biomass. The post-test analysis results of SOFCs are described after operation with different concentrations of phenol. The tests with pure syngas and up to 2 g/Nm3 of phenol show a relatively stable performance in a short-term period of 500 h, but the test with 8 g/ Nm3 phenol shows drastic degradation. The microstructural changes of anode and support layers, phase changes, and carbon deposition were analyzed and discussed based on performance degradation and post-test analysis. No structural changes were found after tests with pure syngas. On the other hand, the addition of phenol causes macro- and micro-scale structural changes in the support, spreading from the fuel inlet. The support shows an erosion pattern and both Ni and YSZ were found as dust after the test. In these eroded areas, carbon fibers were observed by SEM and it was more pronounced with higher phenol content. There was no material phase transformation related to syngas or phenol, but surface carbon deposition was confirmed by Raman spectroscopy in the support and anode layers.

Keywords

SOFCs; Ni/YSZ anode; Bio-syngas; phenol; Carbon deposition; Support erosion, ddc: ddc:620, ddc: ddc:

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
Green