
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigation of two-phase flow in the compressed gas diffusion layer microstructures

Abstract This study aims to investigate how multiple parameters affect the two-phase flow in compressed gas diffusion layer (GDL). A stochastic model is adopted to reconstruct the GDL microstructures. Solid mechanics simulations on the reconstructed GDL microstructures are performed, based on the finite element method (FEM). Various pore morphologies and distributions of compressed GDLs are observed. Two-phase flow in GDL is simulated using a volume of fluid (VOF) model. Corner droplet (on the GDL surface) and water flow (emerging from GDL bottom) are considered. It is found that two-phase flow in the GDL is highly influenced by compression, fiber diameter, porosity, and GDL thickness. The results indicate that a larger fiber diameter or higher porosity contributes to the water transport due to larger average pore size. Furthermore, water removal from a thicker GDL is more difficult, whereas water transport in the lower part of a compressed thick GDL is easy.
- Tianjin University China (People's Republic of)
- Loughborough University United Kingdom
- Tianjin University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).48 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
