
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Process design for green hydrogen production

A membrane assisted process for green hydrogen production from a bioethanol derived feedstock is here developed and evaluated, starting from the conventional Steam Methane Reforming (SMR) process. Such a process is suitable for centralized hydrogen production, and is here analyzed for a large-scale H2 production unit with the capacity of 40.000 Nm3/h. The basic Steam Ethanol Reforming (SER) process scheme is modified in a membrane assisted process by integrating the Pd-membrane separation steps in the most suitable reaction steps. The membrane assisted process, configured in three alternative architectures (Open architecture, Membrane Reactor and Hybrid architecture) was evaluated in terms of efficiencies and hydrogen yields, obtaining a clear indication of improved process performance. The alternative membrane assisted process architectures are compared to the basic SER process and to the benchmark SMR process fed by natural gas, for an overall comparative assessment of the efficiency and specific CO2 emissions and for an economic analysis based on the operating expenditures.
- Eindhoven University of Technology Netherlands
- Technical University Eindhoven Netherlands
- Technical University Eindhoven TU Eindhoven Research Portal Netherlands
- Technical University Eindhoven Netherlands
Sustainability and the Environment, Membrane reactor, Green hydrogen production, Process scheme, Energy Engineering and Power Technology, Ethanol reforming, Condensed Matter Physics, Fuel Technology, Process intensification, SDG 7 - Affordable and Clean Energy, Renewable Energy, SDG 7 – Betaalbare en schone energie
Sustainability and the Environment, Membrane reactor, Green hydrogen production, Process scheme, Energy Engineering and Power Technology, Ethanol reforming, Condensed Matter Physics, Fuel Technology, Process intensification, SDG 7 - Affordable and Clean Energy, Renewable Energy, SDG 7 – Betaalbare en schone energie
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).77 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
