
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Stochastic explosion risk analysis of hydrogen production facilities

Abstract Explosion risk analysis (ERA) is an effective method to investigate potential accidents in hydrogen production facilities. The ERA suffers from significant hydrogen dispersion-explosion scenario-related parametric uncertainty. To better understand the uncertainty in ERA results, thousands of Computational Fluid Dynamics (CFD) scenarios need to be computed. Such a large number of CFD simulations are computationally expensive. This study presents a stochastic procedure by integrating a Bayesian Regularization Artificial Neural Network (BRANN) methodology with ERA to effectively manage the uncertainty as well as reducing the stimulation intensity in hydrogen explosion risk study. This BRANN method randomly generates thousands of non-simulation data presenting the relevant hydrogen dispersion and explosion physics. The generated data is used to develop scenario-based probability models, which are then used to estimate the exceedance frequency of maximum overpressure. The performance of the proposed approach is verified by analyzing the parametric sensitivity on the exceedance frequency curve and comparing the results against the traditional ERA approach.
- China University of Petroleum, Beijing China (People's Republic of)
- Memorial University of Newfoundland Canada
- CNOOC Limited Hong Kong
- China University of Petroleum, East China China (People's Republic of)
- China University of Petroleum, Beijing China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
