
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance degradation prediction of proton exchange membrane fuel cell using a hybrid prognostic approach


Rui Pan

Yujie Wang

Zonghai Chen
Abstract The proton exchange membrane fuel cell has been widely used for industrial systems; however, its performance gradually degrades during use. Therefore, the study on the performance degradation prediction of fuel cells is helpful to extend its lifespan. In this paper, a novel hybrid approach using a combination of model-based adaptive Kalman filter and data-driven NARX neural network is proposed to predict the degradation of fuel cells. The overall degradation trend (i.e., irreversible degradation process) is captured by an empirical aging model and adaptive Kalman filter. Meanwhile, the detail degradation information (i.e., reversible degradation process) is depicted by the NARX neural network. Moreover, the correlation analysis of the reversible voltage time series is carried out to obtain the number of delays of the NARX neural network based on the autocorrelation function and the partial autocorrelation function. Then, the total degradation prediction is the sum of the overall degradation prediction and the detail degradation prediction. Finally, the prognostic capability of the proposed method is verified by two aging datasets, and the results show the effectiveness and superiority of the proposed method which can provide accurate degradation forecasting and remaining useful life.
- University of Science and Technology of China China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).77 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
