Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of hydrogen production methods via integrated MCDM approach under uncertainty

Authors: AYDIN, Nezir; ŞEKER, Şükran;

Assessment of hydrogen production methods via integrated MCDM approach under uncertainty

Abstract

Abstract Energy has a crucial role for the existence and social well-being of human. Among various options, hydrogen is the promising energy carrier for sustainable energy systems. As an important source of hydrogen, Hydrogen Sulphide (H2S) is abundantly found in Black Sea waters and known as an environmental pollutant. The main aim of this study is to evaluate Thermochemical, Electrochemical, Thermal, Photochemical, Plasma, and Thermal methods as decomposition methods, which meet sustainability aspects better than other technologies, based on expert opinions. As sustainable criteria, economically feasibility, ecologically feasibility, efficiency, process simplicity, energy requirement, safety and reliability, applicability and operational suitability and technical maturity are considered to determine the most appropriate hydrogen production method. In this sense, we have suggested a new integrated Multi-Criteria-Decision-Making (MCDM) methodology consisting of stepwise weight assessment ratio analysis (SWARA) with fuzzy set theory (FST) and Weighted Aggregated Sum Product Assessment (WASPAS) by employing interval valued intuitionistic fuzzy sets (IVIFS) in the selection process. The contribution of the study is not only proposing a new method which hybridizes the SWARA and WASPAS under uncertainty but also selecting the most sustainable Hydrogen production method utilizing from H2S in the Black Sea in Turkey, considering sustainable criteria which are unavoidable in energy management problems. At the end, the results are discussed, and sensitivity and comparative analyses are utilized to check the robustness and feasibility of solutions. Consequently, electrochemical is selected as the best and most appropriate hydrogen production method in terms of providing high efficiency in conversion and sustainable processes, i.e handling, transporting and storing harmful chemicals.

Country
Turkey
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 1%