Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Radboud Repository
Article . 2025
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Mass Spectrometry
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring the catalytic mechanism of ATPase at the molecular level by tandem mass spectrometry

Authors: Bin Yan; Koen K.W. van Asseldonk; Baptiste Schindler; Isabelle Compagnon; Anouk M. Rijs;

Exploring the catalytic mechanism of ATPase at the molecular level by tandem mass spectrometry

Abstract

The nucleotide adenosine-5′-triphosphate (ATP) is the coenzyme selected by nature to provide energy for its cellular processes through the ATP hydrolysis reaction. Although the crystal structures and the general working principles of numerous ATP hydrolases (ATPases) are generally known, this omnipresent ATP conversion reaction is not fully understood at the level of local interactions. Questions such as “How does the peptide environment of the active sites of ATPases affect their association with ATP and the consecutive reaction of ATP?” and “Why is the conversion of ATP to ADP preferred over other reactions at the active site?” await detailed answers at the molecular level. Here, tandem mass spectrometry (MS) based techniques are applied to answer these questions. Gas phase studies indicate that the conversion of ATP to ADP is a charge state driven process of which the behaviour varies dramatically with subtle changes in the ATP binding peptide. Of the peptides and peptide mimics studied, only the Ac-Arg-NH2 form of arginine actively regulates the hydrolysis of ATP, which proceeds through the sequential release of the ADP • peptide complex and ADP. Relative ion activation studies of the fragmentation patterns of the ATP • Ac-Arg-NH2 complex show that phosphate bond dissociation is preferred over breakage of the non-covalent bond between ATP and the peptide mimic, which coincidentally agrees with the behaviour of catalysed ATP hydrolysis reaction in solution.

Country
Netherlands
Keywords

ATP, Mass spectrometry, Nucleotides, Non-covalent interactions, Activation energy, Molecular and Laser Physics, Collision induced dissociation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green