
Found an issue? Give us feedback
Publikationer från Uppsala Universitet
Article . 2015
Data sources: Publikationer från Uppsala Universitet
Digitala Vetenskapliga Arkivet - Academic Archive On-line
Article . 2015 . Peer-reviewed
International Journal of Marine Energy
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Optimizing wave energy parks with over 1000 interacting point-absorbers using an approximate analytical method

Authors: Göteman, Malin; Engström, Jens; Eriksson, Mikael; Isberg, Jan;
Abstract
Large arrays of wave energy converters of point-absorber type are studied using an approximate analytical model. The model is validated against a numerical method that takes into account full hydrodynamic interactions based on linear potential flow theory. The low computational cost of the analytical model enables parameter studies of parks in the MW range and includes up to over 1000 interacting devices. The model is actuated by irregular wave data obtained at the Swedish west coast. In particular, focus is on comparing park geometries and improving park configurations to minimize the power fluctuations.
Country
Sweden
Related Organizations
- Uppsala University Sweden
Keywords
Energy Systems, Energisystem
Energy Systems, Energisystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).55 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
55
Top 10%
Top 10%
Top 10%
Green
bronze