Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Refrigeration
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization of mixed fluid cascade LNG process using a multivariate Coggins step-up approach: Overall compression power reduction and exergy loss analysis

Authors: Alam Nawaz; Muhammad Abdul Qyyum; Kinza Qadeer; Mohd Shariq Khan; Ashfaq Ahmad; Sanggyu Lee; Moonyong Lee;

Optimization of mixed fluid cascade LNG process using a multivariate Coggins step-up approach: Overall compression power reduction and exergy loss analysis

Abstract

Abstract The mixed fluid cascade (MFC) process is considered one of the most promising candidates for producing liquefied natural gas (LNG) at onshore sites, mainly owing to its high capacity and relatively high potential energy efficiency. The MFC process involves three refrigeration cycles for natural gas precooling, liquefaction, and subcooling, making its operation more complex and sensitive. Each refrigeration cycle consists of a different mixed refrigerant, which must be optimized to change feed and ambient conditions to operate efficiently. Any sub-optimal solution can lead to high exergy losses, ultimately reducing the process energy efficiency. Operating optimally is a challenging task, mainly owing to the non-linear interactions between the constrained decision (design) variables and complex thermodynamics involved in MFC refrigeration cycles. In this context, we employ a multivariate Coggins step-up approach to reduce the exergy losses associated with the MFC process. This study reveals that the overall exergy losses can be minimized to 35.91%; resulting in 25.4% overall energy savings compared to sub-optimal MFC processes.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%