Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CORE
Article . 2019
License: CC BY NC ND
Data sources: CORE
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Refrigeration
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Refrigeration
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adsorption cooling system employing novel MIL-101(Cr)/CaCl2 composites: Numerical study

Authors: Eman Elsayed; Raya AL-Dadah; Saad Mahmoud; Paul Anderson; Ahmed Elsayed;

Adsorption cooling system employing novel MIL-101(Cr)/CaCl2 composites: Numerical study

Abstract

Due to the significant increase in the global temperature, the demand for cooling is dramatically rising. Most of this demand is met by conventional systems driven by electricity generated using fossil fuels contributing in the global warming phenomenon. The adsorption system is a sustainable system being driven by waste or low-grade heat sources such as solar energy. MIL-101(Cr) is a metal–organic framework (MOF) material with exceptional properties and high-water uptake. Nevertheless, it is not suitable for adsorption cooling application as the high capacity is taking place only at high relative pressure range (>0.5). The water adsorption characteristics of MIL-101(Cr) were significantly enhanced through incorporating the material with calcium chloride. Results showed that at a desorption temperature of 90°C and a chilled water inlet temperature of 10°C, the SCP increased from 168 for the neat MIL-101(Cr) to 248 and 388 W kg[sup]‒1 for Comp_1:5 and Comp_1:8 CaCl[sub]2 composites, respectively outperforming the long dominating silica gel.

Country
United Kingdom
Related Organizations
Keywords

mechanical

Powered by OpenAIRE graph
Found an issue? Give us feedback