
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A thermodynamic approach to calculating the operating osmotic pressure of pressure-driven membrane separation absorption cycles

Abstract Membrane separation of absorption solutions has potential application in refrigeration technology. Operating osmotic pressure is a basic parameter governing the design and evaluation of a membrane separation absorption system. This study presents a thermodynamic approach to calculating the osmotic pressure of an absorption solution using its density and vapour pressure. A correlation between osmotic pressure, density and vapour pressure has been deduced and a calculation example is given. Furthermore, combination of this correlation with the Clausius–Clapeyron equation has produced a simple and interesting result. For a membrane separation absorption cycle, the operating osmotic pressure required is related to the specific latent heat of refrigerant, operating temperatures and density of absorption solution.
- Nottingham Trent University United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
