
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Estimation of instantaneous local heat transfer coefficient in spark-ignition engines

Abstract Optimizing heat transfer for internal combustion engines requires application of advanced development tools. In addition to experimental method, numerical 3D-CFD calculations are needed in order to obtain an insight into the complex phenomenas in-cylinder processes. In this context, fluid flow and heat transfer inside a four-valve engine cylinder is modeled and effects of changing engine speed on dimensionless parameters, instantaneous local Nusselt number and Reynolds number near the surface of combustion chamber are studied. Based on the numerical simulation new correlations for instantaneous local heat transfer on the combustion chamber of SI engines are derived. Results for several engine speeds are compared for total heat transfer coefficient of the cylinder engine with available correlation proposed by experimental measurements and a close agreement is observed. It is found that the local value of heat transfer coefficient varies considerably in different parts of the cylinder, but it has equivalent trend with crank angle position.
- Shiraz University Iran (Islamic Republic of)
- K.N.Toosi University of Technology Iran (Islamic Republic of)
- K.N.Toosi University of Technology Iran (Islamic Republic of)
- Shiraz University Iran (Islamic Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
