Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Thermal Sciences
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution

Authors: O.D. Makinde; I.L. Animasaun;

Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution

Abstract

Abstract In this paper, the effects of magnetic field, nonlinear thermal radiation and homogeneous-heterogeneous quartic autocatalysis chemical reaction on an electrically conducting (36 nm) alumina-water nanofluid containing gyrotactic-microorganism over an upper horizontal surface of a paraboloid of revolution is presented. The case of unequal diffusion coefficients of reactant A (bulk-fluid) and reactant B (catalyst at the surface) in the presence of bioconvection is presented. In this article, a new buoyancy induced model for nanofluid flow along an upper horizontal surface of a paraboloid of revolution is introduced. The viscosity and thermal conductivity are assumed to vary with volume fraction and suitable models for the case 0% ≤ ϕ ≤ 0.8% are adopted. The transformed governing equations are solved numerically using Runge-Kutta fourth order along with shooting technique (RK4SM). Good agreement is obtained between the solutions of RK4SM and MATLAB bvp5c for a limiting case. The influence of pertinent parameters are illustrated graphically and discussed. It is found that at any values of magnetic field parameter, the local skin friction coefficient is larger at high values of thickness parameter while local heat transfer rate is smaller at high values of temperature parameter.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    273
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
273
Top 1%
Top 1%
Top 0.1%