Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Industrial Crops and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Industrial Crops and Products
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Co-fermentation of immobilized yeasts boosted bioethanol production from pretreated cotton stalk lignocellulosic biomass: Long-term investigation

Authors: Mohammad S. Al-Assiri; Yuanzhang Zheng; Kamran Malik; Farid A. Harraz; Xiangkai Li; El-Sayed Salama; Marwa M. El-Dalatony; +2 Authors

Co-fermentation of immobilized yeasts boosted bioethanol production from pretreated cotton stalk lignocellulosic biomass: Long-term investigation

Abstract

Abstract The main concern of lignocellulosic biomass utilization for biofuel production is the presence of lignin which hinder the hemicellulose and cellulose accessibility. In this study, chemical and biological pretreatments have been used for decomposition of the lignocellulosic cotton stalk (CS) into monosaccharides. Long-term fermentation/co-fermentation (upto 5 cycles) of pretreated CS by immobilized yeasts (Saccharomyces cerevisiae YPH499 and Pachysolen tannophilus 32691) for bioethanol was investigated. Spectroscopic analysis (including FTIR, XRD, SEM, and TGA) showed the disintegration and abrasion in CS structure after application of both the pretreatments. The maximum sugar utilization efficiency in 1st cycle of co-fermentation by immobilized yeasts was 94.1 and 90.4% with 0.46 and 0.44 g/g bioethanol production in chemical and biological pretreatment, respectively. Moreover, bioethanol yield was slightly sustained till 2nd cycle (0.38−0.40 g/g). However, bioethanol production steadily declined at 3rd cycle and reached to the lowest value at 5th cycle. These results demonstrated that co-fermentation with immobilization approach might significantly improve the bioethanol production from pretreated lignocellulosic biomass (including CS).

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 1%
Top 10%
Top 1%