Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Machinery - Reposito...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Industrial Crops and Products
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Kinetic and thermodynamic compensation phenomena in C3 and C4 energy crops pyrolysis: Implications on reaction mechanisms and product distributions

Authors: Janković, Bojan; Manić, Nebojša; Popović, Mina; Cvetković, Slobodan; Dželetović, Željko; Stojiljković, Dragoslava;

Kinetic and thermodynamic compensation phenomena in C3 and C4 energy crops pyrolysis: Implications on reaction mechanisms and product distributions

Abstract

This work provides insight into possibilities of maximum utilization of C3-C4 energy crops for thermo-chemical conversion (slow pyrolysis) into high value biochemicals, platform chemicals, drop-in fuels and combustible gases, using coupled kinetic and thermodynamic analyses. In order to examine the kinetics of decomposition of lignocellulosic components, model-free and model-based methods faded from thermal analysis data were used. Thermodynamic compensation was used for explicatory of entropy controlled process, where conformational changes and chemical exchange directly affect the type and distribution of obtained pyrolytic products. It was shown that external variable (i.e. the heating rate/temperature) does not change either an entire reaction mechanism (mechanistic nature of MG and AD pyrolyses) or transition state, but it changes activation enthalpy and activation entropy which lead to differences in terms of heat energy consumption, pyrolysis favorability and thus rates of generation of activated complex among feedstocks. To investigate the interplay of catalysts (present in feedstocks as minerals) and reactants, selective energy transfer (SET) model was applied. The model showed an activity of catalyst with different outputs towards two reactants, lignin part of the structure in MG and 1,8-cineole in AD. It was shown that AD is more convenient for thermal conversion than MG, regarding to lower transformation energy requirement, higher reactivity, as well as much faster accumulation of products.

Country
Serbia
Keywords

Slow pyrolysis, Bio-fuels, Energy crops, Catalytic activity, Isokinetic temperature, Thermodynamic compensation

Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
7
Top 10%
Average
Top 10%
98
16