Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VinaR - Repository o...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Industrial Crops and Products
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comparative study on the slow pyrolysis of Miscanthus (Miscanthus×giganteus Greef et Deu.) cultivated on agricultural and contaminated soils: Assessment of distribution of final products

Authors: Jovana Perendija; Slobodan Cvetković; Nebojša Manić; Gordana Andrejić; Ivana Vukašinović; Dejan Cvetinović; Bojan Janković;

A comparative study on the slow pyrolysis of Miscanthus (Miscanthus×giganteus Greef et Deu.) cultivated on agricultural and contaminated soils: Assessment of distribution of final products

Abstract

This study aims to investigate the slow pyrolysis behavior of uncontaminated (MSC-I - reference) and heavy metals contaminated (MSC-R) samples with heavy metals from the tailings of a Pb-Zn-Cu flotation mine, consisting of whole stems of Miscanthus. Physicochemical properties of raw materials were investigated through instrumental characterization techniques (Atomic Absorption Spectrometry (AAS), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, and X-ray diffraction (XRD)), while the pyrolysis process was monitored by simultaneous thermal analysis techniques (thermogravimetry (TG) – derivative thermogravimetry (DTG)), coupled with Mass spectrometry (MS), for evolved gas analysis. After determination of the lignocellulose content (cellulose, hemicellulose, and lignin) and extractive of the MSC-I and MSC-R samples, it was found that Pb, Zn, Fe, and Mn in MSC-R lead to very fast decomposition of extractive fraction, which facilitates their distribution in formed bio-char, together with lignin char-participation, acting catalytically. It was established that a much greater fraction of extractives decomposition products and non-volatile heavy metals are incorporated in MSC-R bio-char increasing its yield (23 %), compared to MSC-I bio-char yield (21.5 %). It was identified that MSC-R has increased production of H2, CO, and CO2, while decreased production of CH4, influenced by Fe (Fe has a significant positive effect on CO2 evaluation during MSC-R pyrolysis, enhancing decarboxylation process). It was established that CH4 reforming reactions catalyzed by iron additionally affect methane reduction, and increase production of H2, compared to the reference sample. Isoconversional kinetic analysis showed that pyrolysis reactions profile was strongly conditioned by the presence of heavy metals, such as Cd, Pb, and Zn, because they affect the modification of biomass lignocellulosic structure. Also, it was found that small amounts of Cd present in MSC-R can increase pyrolysis activation energy of three pseudo-components, and inhibit their deoxygenation, thus increasing yield of bio-char.

Country
Serbia
Keywords

Dual behavior, Methane reforming, Heavy metals, Miscanthus×giganteus, Deoxygenation, Pyrolysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 46
    download downloads 2
  • 46
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
3
Average
Average
Average
46
2