Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

General framework for localised multi-objective evolutionary algorithms

Authors: Robin C. Purshouse; Rui Wang; Rui Wang; Peter J. Fleming;

General framework for localised multi-objective evolutionary algorithms

Abstract

Many real-world problems have multiple competing objectives and can often be formulated as multi-objective optimisation problems. Multi-objective evolutionary algorithms (MOEAs) have proven very effective in obtaining a set of trade-off solutions for such problems. This research seeks to improve both the accuracy and the diversity of these solutions through the local application of evolutionary operators to selected sub-populations. A local operation-based implementation framework is presented in which a population is partitioned, using hierarchical clustering, into a pre-defined number of sub-populations. Environment-selection and genetic-variation are then applied to each sub-population. The effectiveness of this approach is demonstrated on 2- and 4-objective benchmark problems. The performance of each of four best-in-class MOEAs is compared with their modified local operation-based versions derived from this framework. In each case the introduction of the local operation-based approach improves performance. Further, it is shown that the combined use of local environment-selection and local genetic-variation is better than the application of either local environment-selection or local genetic-variation alone. Preliminary results indicate that the selection of a suitable number of sub-populations is related to problem dimension as well as to population size.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%