Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Analytica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Analytical and Applied Pyrolysis
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An investigation into the catalytic cracking of LDPE using Py–GC/MS

Authors: G. San Miguel; David P. Serrano; J.M. Rodríguez; José M. Escola; José María Aguado;

An investigation into the catalytic cracking of LDPE using Py–GC/MS

Abstract

Abstract Pyrolysis coupled with gas chromatographic separation and mass spectrometry detection (Py–GC/MS) has been used to study the catalytic degradation of low-density polyethylene (LDPE). This novel approach allowed rapid screening of the catalytic activity of different acid solids and permitted a straightforward analysis of the resulting products. The results obtained are comparable to those reported by other authors while very small sample and catalysts masses (less than 0.2 mg) were required. For the purpose of this work, three acid solids differing in their textural and acid properties (micrometer HZSM-5, nanocrystaline n -HZSM-5 and Al-MCM-41) were synthesized, characterised for their chemical and structural characteristics and tested for their thermal stability between 550 and 800 °C. Thermogravimetric (TG) analysis was then employed to evaluate their catalytic activity in the degradation of pure LDPE. This activity was related to their capacity to shift the degradation reaction to lower temperatures. Py–GC/MS analysis of pure LDPE at 700 °C generated a pyrogram with characteristic triplets corresponding to straight chain diene, alkene and alkane hydrocarbons of varying lengths. Catalytic degradation of LDPE over micrometer and nanocystalline HZSM-5 zeolites generated a similar range of degradation products with a marked increase in the light olefins and aromatic fractions (e.g. benzene, toluene, xylene) and complete elimination of heavier olefin and paraffin hydrocarbons. Despite its high catalytic activity, as determined by TG analysis, mesoporous Al-MCM-41 exhibited no shape selectivity in the products generated with a low proportion of aromatics and a higher content of olefin and paraffin species.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    130
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
130
Top 1%
Top 10%
Top 10%