Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Analytica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Analytical and Applied Pyrolysis
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates

Authors: Vikram Yadama; Armando G. McDonald; Manuel Garcia-Perez; Manuel Raul Pelaez-Samaniego; Manuel Raul Pelaez-Samaniego; Eini C. Lowell;

Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates

Abstract

Abstract Torrefaction enhances physical properties of lignocellulosic biomass and improves its grindability. Energy densification, via fuel pellets production, is one of the most promising uses of torrefaction. Lignin contributes to self-bonding of wood particles during pelletization. In biomass thermal pretreatment, part of lignin (in the form of lignin liquid intermediates – LLI) migrates from the cell wall and middle lamella and deposits on the fibers’ surfaces and/or inner surface of the secondary cell wall. This material can play an important role on bonding particles during wood pelletization as well as production of wood composites. The objective of this paper was to investigate the influence of torrefaction conditions on amount, composition, molecular weight, and pattern of deposition of LLI on wood cells. Torrefaction of extracted ponderosa pine in the range of temperatures 225–350 °C was conducted in a tube furnace reactor and the torrefied wood was extracted with dichloromethane (DCM) to isolate the lignin-rich soluble material. A maximum yield of DCM-soluble material was observed in wood torrefied at approximately 300 °C for 30 min. ESI/MS revealed that the molecular weight of the removed material is less than 1200 g mol −1 and decreases as torrefaction temperature augments. Semiquantitative Py-GC/MS of the DCM-soluble material suggests that this lignin-rich material migrates and deposits on cells’ surfaces in amounts that depend on the torrefaction conditions. Py-GC/MS of the solid fraction after the DCM process showed a progressive reduction of products of the pyrolysis of lignin and levoglucosan as torrefaction temperature increased, revealing that lignin content in the solid decreased due in part to migration. SEM of torrefied particles helped to show the apparent formation of LLI during torrefaction. Results suggest that it is possible to control the thermal pretreatment conditions to increase or reduce the amount of lignin-rich material on fiber surfaces as required for downstream processes (e.g., fuel pellets or wood composites manufacture).

Keywords

Wood Pellets, Ponderosa Pine, Wood Composites, Lignin, Wood Torrefaction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 10%
Top 10%
Top 10%
bronze