Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Analytica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Analytical and Applied Pyrolysis
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Production and characterization of biocrude and biochar obtained from non-edible de-oiled seed cakes hydrothermal conversion

Authors: Dinesh Kumar; Dinesh Kumar; Kamal K. Pant;

Production and characterization of biocrude and biochar obtained from non-edible de-oiled seed cakes hydrothermal conversion

Abstract

Abstract Hydrothermal conversion coupled with high pressure water and steam of three de-oiled non-edible seed cakes of Jatropha curcasa, Pongammia pinnata and Tung to biocrude is explored in this work. The cakes were characterized for proximate, ultimate and ligno-cellulosic compositions using ASTM and TAPPI standard methods. All studies were conducted at high temperature and pressure in a semi-batch autoclave. Highest conversion with maximum biocrude yield (∼35.3%) was obtained with P. pinnata cake. Silica adsorption chromatography result showed higher oxygenated aromatics subfraction in both Tung biocrude and Jatropha biocrude. GC/MS qualitative analysis confirmed the presence of heavy, oxygenated/ nitrogenous and poly aromatic hydrocarbons with carbon number ranging from C 5 -C 47 in the biocrude. The viscosity, pH, density, total acidic number (TAN) and water content of biocrudes were evaluated using various standard methods. 34.2 to 45.8% increases in the calorific value is observed for biomass to biocrude. Biochar obtained were characterized using proximate and ultimate analysis and SEM, TGA techniques. Higher calorific values (24.7–26.3 MJ/kg) of all the biochar make them suitable for their potential application as briquettes in the furnace for power generation.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%