Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Analytica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Analytical and Applied Pyrolysis
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pyrolysis of poplar, cellulose and lignin: Effects of acidity and alkalinity of the metal oxide catalysts

Authors: Chenting Zhang; Xun Hu; Hongyu Guo; Tao Wei; Dehua Dong; Guangzhi Hu; Song Hu; +3 Authors

Pyrolysis of poplar, cellulose and lignin: Effects of acidity and alkalinity of the metal oxide catalysts

Abstract

Abstract This study investigated the effects of the acidity/alkalinity of seven oxides (Al2O3, SiO2, ZnO, K2O, MgO, CaO, La2O3) on the pyrolysis of poplar, cellulose and lignin. The results showed that the basic supports such as CaO and MgO promoted the formation of gaseous products. CO, CO2, and CH4 were the main gaseous products in the pyrolysis of poplar, cellulose and lignin, and CO was formed first, followed by CO2 and CH4. Some H2 was also formed from the dehydrogenation reactions over CaO with cellulose as the feedstock. The acidic oxides promoted the tar formation, while the basic oxides suppressed tar formation. The oxides like CaO could remarkably suppress the production of phenolic compounds. The coke formation over the basic oxides were also much more significant than that over the acidic oxides, and the tar from cellulose contributed more towards coking. The heating of the coke in inert gas released CO2, CO, H2, CH4 via probably decarboxylation/decarbonylation, dehydrogenation and etc. The coke from the pyrolysis of lignin was much more stable. CaO and La2O3 reacted with the CO2 produced in pyrolysis and form the carbonates, while MgO could not. The TPO–MS characterization showed that the coke species were multiple types over CaO, and a single type over MgO. The cellulose–derivatives and the lignin–derivatives have distinct effects on the structural configuration of the coke.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    118
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
118
Top 1%
Top 10%
Top 1%