Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Analytica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Analytical and Applied Pyrolysis
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Analytical and Applied Pyrolysis
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PAH sampling and quantification from woody biomass fast pyrolysis in a pyroprobe reactor with a modified tar sampling system

Authors: W. de Jong; C. Tsekos; P.L. Schoenmakers; Konstantinos Anastasakis; Konstantinos Anastasakis;

PAH sampling and quantification from woody biomass fast pyrolysis in a pyroprobe reactor with a modified tar sampling system

Abstract

The present work focuses on the sampling procedure and quantification of the PAH yield from the fast pyrolysis of waste softwood. In particular, fast pyrolysis experiments were conducted using a CDS Pyroprobe 5200 at temperatures between 500 °C and 1000 °C, at a heating rate of 600 °C/s for a sample size of 30 mg. High performance liquid chromatography (HPLC) was used for the determination of the PAH compounds present in the liquid sample fraction, while a micro – GC was employed for the analysis of the main gaseous products (CO, CO2, CH4 and H2). An alternative tar sampling protocol was proposed, which employed the use of a cold trap (50 °C) and an isopropanol filled impinger bottle for the collection of the condensable products. The experiments were compared to heated foil reactor based pyrolysis tests within the same temperature range and heating rate, except for a slightly lower sample size (10 mg). The Pyroprobe and adapted sampling system proved to be more efficient regarding PAH capture and quantification compared to the heated foil reactor. Naphthalene, acenaphthylene and phenanthrene were the main PAH compounds detected. The PAH yields increased with pyrolysis temperature, up to values corresponding to roughly 0.2 wt% of the overall yield at 1000 °C. From the results it was derived that PAH evolution is mainly a product of secondary decomposition of primary tar, since the char yield stabilized for higher temperatures and the yields of CO, H2 and CH4 increased. Overall mass balance closure values were around 80 wt% on average. Char and gas yields were determined with high reproducibility, however gravimetric liquid analysis lacked due to the inability to gravimetrically measure the yield condensing in the impinger bottle. Future work is aimed on improving on this particular aspect. Overall, the alternative tar sampling system proposed was successful in the quantification of PAH from biomass fast pyrolysis experiments offering increased flexibility, accuracy and practicality of use.

Country
Netherlands
Keywords

660, Wood, Polycyclic aromatic hydrocarbons, Pyroprobe, Tar, Fast pyrolysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 28
    download downloads 53
  • 28
    views
    53
    downloads
    Data sourceViewsDownloads
    TU Delft Repository2853
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
10
Top 10%
Average
Top 10%
28
53
Green
hybrid