Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Analytica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Analytical and Applied Pyrolysis
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comprehensive kinetic study of Imperata Cylindrica pyrolysis via Asym2sig deconvolution and combined kinetics

Authors: Farrukh Jamil; Muhammad S. Abu Bakar; Ashfaq Ahmed; Ashfaq Ahmed; Ashfaq Ahmed; Young-Kwon Park; Murid Hussain; +2 Authors

Comprehensive kinetic study of Imperata Cylindrica pyrolysis via Asym2sig deconvolution and combined kinetics

Abstract

Abstract This study examined the non-isothermal kinetics of the slow pyrolysis of Imperata Cylindrica (IC). Pyrolysis conditions were developed under the pure N2 flow and non-isothermal conditions at the heating rates of 2.5, 5, 10, and 17.5 K/min and over the temperature range of 303–1173 K. The IC pyrolysis profiles could be identified into three parallel reactions, each of which corresponded to pseudo-hemicelluloses (P-Hem), pseudo-cellulose (P-Cell), and pseudo-lignin (P-Lig) decomposition. A systematic kinetic study of the pyrolysis of IC via thermogravimetric analysis (TGA) deconvolution using Asymmetric Double Sigmoidal (Asym2sig), Friedman differential iso-conversional and combined kinetics of biomass pseudo-components was carried out. The kinetics parameters of pseudo components fitted well with the pyrolysis experimental data for all the heating rates. Differential master-plots showed that the reaction mechanisms for pseudo hemicellulose (P-Hem) and pseudo cellulose (P-Cell) were diffusional and order based, and high order based (3rd order) for the pseudo lignin (P-Lig). Mechanism of P-Hem, P-Cell and P-Lig could be further reconstructed to Sestak and Berggren model of f α = α - 0.9875 1 - α 1.325 - l n ⁡ ( 1 - α ) 0.0209 , f α = α 0.3313 1 - α 1.4731 - l n ⁡ ( 1 - α ) 0 . 0215 and f α = α - 2.9551 1 - α 2.7642 - l n ⁡ ( 1 - α ) 0.0074 , respectively. The combined kinetic reported the activation energies of pseudo-components were as 194.709 kJ/mol, 179.968 kJ/mol and 219.226 kJ/mol for P-Hem, P-Cell and P-Lig, respectively.

Country
Australia
Keywords

biomass, IC, pyrolysis, renewable energy, 4004 Chemical engineering, kinetics, Institute for Sustainable Industries and Liveable Cities, chemical engineering, Imperata Cylindrica

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 1%
Top 10%
Top 1%