
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Feasibility of advancing the production of bio-jet fuel via microwave reactor under low reaction temperature

Catalytic reduction of oxygen-containing compounds in palm kernel oil has been studied under H2-free atmosphere condition using microwave system approach over Raney nickel and magnetite activated carbon-based catalysts. The role of porous structure and active O-containing groups of magnetite activated carbon (FeMo/ ACB) catalyst during deoxygenation (DO) at 250 degrees C was investigated. Activated carbon catalysts, obtained from bamboo-derived biochar activation at 800 degrees C with KOH exhibited large surface area and O-containing group. With the introduction of the FeMo/ACB catalyst, the relative content of bio-jet fuel increased remarkably (-80%) with the bio-jet fuel selectivity of -80%. Noted, the high DO activity also showed strong correlation with the presence of high acidic sites, high porosity and surface on the bamboo-derived carbon support, which in turn allows the active metals Fe-Mo to coat the ACB support thoroughly thus promoting a more efficient DO reaction. In addition, the FeMo/ACB catalyst showed excellent reusability over five consecutive cycles, with hydrocarbon fractions ranging from 62% to 80% and bio-jet fuel selectivity from 65% to 80% and minimum coke formation (< 2 wt%).
- University of Malaya Malaysia
- University of Malaya Malaysia
- National University of Malaysia Malaysia
- National University of Malaysia Malaysia
TD Environmental technology. Sanitary engineering, 540, TP Chemical technology
TD Environmental technology. Sanitary engineering, 540, TP Chemical technology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
