Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ KTUePubl (Repository...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Analytical and Applied Pyrolysis
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synthesis of value-added aromatic chemicals from catalytic pyrolysis of waste wind turbine blades and their kinetic analysis using artificial neural network

Authors: Yousef, Samy; Eimontas, Justas; Striūgas, Nerijus; Abdelnaby, Mohammed Ali;

Synthesis of value-added aromatic chemicals from catalytic pyrolysis of waste wind turbine blades and their kinetic analysis using artificial neural network

Abstract

This research aims to convert the resin fraction of waste wind turbine blades (WTB) into value-added aromatic chemicals using catalytic pyrolysis. The catalytic study on WTB made of glass fibre/unsaturated polyester resin (UPR) was performed on two different types of zeolite catalysts (ZSM-5 and Y-type) using a thermogravimetric (TG) analyser. The effect of catalyst and heating rate on the abundance and composition of the synthesised aromatic chemicals was observed using TG-FTIR and GC/MS. The kinetics and thermodynamic behaviour of catalytic pyrolysis of WTB was also studied using traditional modelling techniques (KAS, FWO, Friedman, Vyazovkin, and Cai) and an artificial neural network (ANN). TG-FTIR results showed that the gases released from the catalytic process were very rich in aromatic groups, while GC/MS analysis revealed that benzene, toluene, and ethylbenzene (BTE) were the main constituents of the synthesised aromatic chemicals with abundance estimated at 36% (ZSM-5 at 10°C/min) and 64% (Y-type at 15°C/min) accompanied by a significant reduction in styrene formation up to 16.2% (main toxic element in the UPR). Besides, it contributed to reduction of the activation energy of the reaction up to 126 KJ/mol (ZSM-5) and 100 KJ/mol (Y-type). The trained ANN model also showed high performance in predicting the thermal decomposition zones of WTB at unknown heating rates with R2 close to 1. Accordingly, the use of catalytic pyrolysis of WTB over a Y-type zeolite catalyst is highly recommended for decomposition of UPR to aromatic chemicals BTE and reduction of styrene in the produced fuel.

Country
Lithuania
Keywords

Artificial neural network, Catalytic pyrolysis kinetics, Catalytic pyrolysis, Waste wind turbine blades, Value-added aromatic chemicals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%
Green