Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Alloys an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Alloys and Compounds
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Digital.CSIC
Article . 2010 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modification of optical properties in ZnO particles by surface deposition and anchoring of NiO nanoparticles

Authors: F. Rubio-Marcos; C. V. Manzano; J. J. Reinosa; I. Lorite; J. J. Romero; J. F. Fernández; M. S. Martín-González.;

Modification of optical properties in ZnO particles by surface deposition and anchoring of NiO nanoparticles

Abstract

Nanodispersion of NiO nanoparticles on the surface of ZnO microparticles has been carried out by means of a low energy dry mixing method. This method keeps the shape and size of the ZnO microparticles that served as support to hold the NiO nanoparticles. The dispersion and anchoring of the NiO nanoparticles takes place by means of an electrochemical reaction with the OH-groups present at the ZnO surface. The process took place at room temperature and cation interdiffusion between ZnO and NiO have not been detected by structural analysis. Nevertheless, changes in the optical properties of semiconductor ZnO particles have been observed due to the deposition of the nanoparticles. These changes correlate with the amount of NiO nanoparticles at the ZnO particle surface. The amount of defects, i.e oxygen vacancies, interstitial oxygen and zinc vacancies, rises with the increasing NiO content. The authors express their thanks to the CICYT project MAT2010-21088-C03-01, MAT2008-06330, PLE2009-0073, and to the European Commission ERC-2008-Stg: 240497 for their financial support. MSMG want to acknowledge B. Alen from IMM for technical support. Peer reviewed

Country
Spain
Keywords

Surface, Zinc oxide, Nanoparticles, Photoluminescence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 48
    download downloads 38
  • 48
    views
    38
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC4838
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
26
Top 10%
Top 10%
Top 10%
48
38
Green
bronze
Funded by
Related to Research communities
Energy Research