Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2024 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Biotechnology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal and operational deactivation of Aspergillus fumigatus β-glucosidase in ethanol/water pretreated wheat straw enzymatic hydrolysis

Authors: Mateusz Wojtusik; Priscilla Vergara; Juan C. Villar; Felix Garcia-Ochoa; Miguel Ladero;

Thermal and operational deactivation of Aspergillus fumigatus β-glucosidase in ethanol/water pretreated wheat straw enzymatic hydrolysis

Abstract

The stabilization effects on a novel commercial β-glucosidase preparation from Aspergillus fumigatus during saccharification of ethanol-water pretreated wheat straw were analysed in comparison to this enzyme stability during cellobiose hydrolysis. For this purpose, the kinetics of β-glucosidase residual activity during cellobiose hydrolysis from 40 till 70 °C were studied, resulting in the fitting of a first-order partial deactivation model. Furthermore, a subsequent fitting of a kinetic model including this first-order deactivation equation and a Michaelis-Menten equation with double competitive inhibition by glucose and uncompetitive inhibition by cellobiose to released glucose was successful. Finally, global enzyme deactivation and prospective deactivation of enzyme remaining in the liquid phase were evaluated during wheat straw hydrolysis at 50 °C as a relevant saccharification process. Results suggest that the presence of a solid substrate dramatically reduces the global deactivation rate of the enzyme and, in addition, there is no loss the stability of the enzyme in the liquid phase along the saccharification process, even for 72 h.

Country
Spain
Keywords

Cellobiose, Ethanol, Aspergillus fumigatus, Hydrolysis, beta-Glucosidase, Temperature, Water, Thermal stability, Wheat straw, Saccharification, Fungal Proteins, Kinetics, Glucose, β-glucosidase, Enzyme Stability, Triticum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 27
    download downloads 6
  • 27
    views
    6
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC276
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
6
Top 10%
Average
Top 10%
27
6
Green
Related to Research communities
Energy Research