Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Catalysisarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Catalysis
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How Pt nanoparticles affect TiO2-induced gas-phase photocatalytic oxidation reactions

Authors: Rezvaneh Amrollahi; Rezvaneh Amrollahi; Bindikt D. Fraters; Guido Mul;

How Pt nanoparticles affect TiO2-induced gas-phase photocatalytic oxidation reactions

Abstract

The effect of Pt nanoparticles on the gas-phase photocatalytic oxidation activity of TiO2 is shown to be largely dependent on the molecular functionality of the substrate. We demonstrate that Pt nanoparticles decrease rates in photocatalytic oxidation of propane, whereas a strong beneficial effect of Pt was observed in oxidation of ethanol. On the basis of oxygen conversion, Pt nanoparticles result in an increase in rates of TiO2 from 1.55 mmol O2/g/h to 4.65 mmol O2/g/h, at a light intensity of 8 mW/cm2 at 375 nm. The latter value is comparable to obtained in propane oxidation in the absence of Pt and represents a photonic efficiency of approximately 2%. Besides an effect on oxygen conversion rate, we also observed significant effects of Pt nanoparticles on reaction selectivity. DRIFT analysis demonstrates that acetone is a rather abundant surface-bound intermediate when propane is oxidized in the presence of Pt nanoparticles, while this is barely observed in the absence of Pt nanoparticles. In ethanol oxidation, both surface-bound and gas-phase acetaldehydes are produced more significantly in the presence than in the absence of Pt. The activity data are discussed on the basis of adsorption affinity of the reactants toward TiO2, much higher for ethanol as compared to propane. The changes in (surface) selectivity are discussed on the basis of Pt-induced alterations in the rate-determining steps

Country
Netherlands
Keywords

Ethanol, Pt, Propane, METIS-311539, TiO, Oxidation, 2023 OA procedure, IR-97074, Mechanism, Photocatalysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Energy Research