Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Colloid and Interface Science
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Upscaling feasibility of a graphite-based truncated conical microbial fuel cell for bioelectrogenesis through organic wastewater treatment

Authors: Abdullah Nawaz; Waseem Raza; Hajera Gul; Abdullah Khan Durrani; Faisal K. Algethami; Christian Sonne; Ki-Hyun Kim;

Upscaling feasibility of a graphite-based truncated conical microbial fuel cell for bioelectrogenesis through organic wastewater treatment

Abstract

In this research, efforts were put to demonstrate synergistic interactions between bioenergy generation and wastewater treatment. The extent of such synergistic effect was assessed against wastewater effluents released from the beverage industry through the operation of a membrane-less truncated conical (TC) microbial fuel cell (MFC). A graphite-based reactor was operated for five cycles in batch mode using beverage industry wastewater as an organic substrate. Maximum bioelectricity produced on the fifth operating cycle corresponded to a voltage of 338 mV and a power of 1.14 mW at 100 Ω. The MFC recorded a higher substrate degradation rate (0.84 kg of chemical oxygen demand [COD]/m3-day) accompanied by the development of an electroactive biofilm and polarization behavior (e.g., a reduction in internal resistance from 323 Ω to 197 Ω over five operation cycles). Cyclic voltammetry showed a maximum performance of the biofilm during the fifth cycle (through its enrichment) as interpreted by oxidation and reduction currents of 2.48 and -2.21 mA, respectively. The performance of the proposed MFC was superior to other designs reported previously in both effluent treatment and bioenergy generation. A maximum treatment efficiency of 84.4% (in 385 h) was seen at an organic load (COD) of 3500 mg/L with the specific power yield (0.504 W/Kg of substrate (COD) removal) and volumetric power yield (15.03 W/m3). Our experimental studies support that the proposed system could be upscaled to realize the commercial operation.

Keywords

Biological Oxygen Demand Analysis, Bioelectric Energy Sources, Surface Properties, Wastewater, Bioenergy generation, Waste Disposal, Fluid, Water Purification, Electroactive biofilm development, Electrophysiology, Beverage industry wastewater, Biofilms, Biodegradation, Graphite, Particle Size, Truncated conical MFC

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%