
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Attributional life cycle assessment of woodchips for bioethanol production

Abstract Besides the apparent need to reduce greenhouse gas emissions, other important factors contributing to the renewed interest in biofuels are energy security concerns and the need of sustainable transportation fuel. Nearly 30% of the annual CO2 emissions in the U.S. come from the transportation sector and more than half of the fuel is imported. Biofuels appear to be a promising option to reduce carbon dioxide emissions, and the reliance on imported oil concomitantly. The interest on (ligno) cellulosic ethanol is gaining momentum as corn-based ethanol is criticized for using agricultural outputs for fuel production. Among many lignocellulosic feedstocks, woodchips is viewed as one of the most promising feedstocks for producing liquid transportation fuels. The renewable and carbon neutral nature of the feedstocks, similar chemical and physical properties to gasoline, and the low infrastructure cost due to the availability of fuel flex vehicles and transportation networks make (ligno) cellulosic bioethanol an attractive option. An in-depth LCA of woodchips shows that harvesting and woodchips processing stage and transportation to the facility stage emit large amount of environmental pollutants compared to other life cycle stages of ethanol production. Our analysis also found that fossil fuel consumption and respiratory inorganic effects are the two most critical environmental impact categories in woodchips production. We have used Eco-indicator 99 based cradle-to-gate LCA method with a functional unit of 4 m3 of dry hardwood chips production.
- University of Queensland Australia
- University of Maine United States
- University of Maine United States
2300 Environmental Science, Woodchips, Sustainability and the Environment, 660, Bioethanol, Environmental impacts, 2105 Renewable Energy, Life cycle assessment, Biofuels, 1408 Strategy and Management, 2209 Industrial and Manufacturing Engineering
2300 Environmental Science, Woodchips, Sustainability and the Environment, 660, Bioethanol, Environmental impacts, 2105 Renewable Energy, Life cycle assessment, Biofuels, 1408 Strategy and Management, 2209 Industrial and Manufacturing Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).56 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
