Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Attributional life cycle assessment of woodchips for bioethanol production

Authors: Neupane, Binod; Halog, Anthony; Dhungel, Shashi;

Attributional life cycle assessment of woodchips for bioethanol production

Abstract

Abstract Besides the apparent need to reduce greenhouse gas emissions, other important factors contributing to the renewed interest in biofuels are energy security concerns and the need of sustainable transportation fuel. Nearly 30% of the annual CO2 emissions in the U.S. come from the transportation sector and more than half of the fuel is imported. Biofuels appear to be a promising option to reduce carbon dioxide emissions, and the reliance on imported oil concomitantly. The interest on (ligno) cellulosic ethanol is gaining momentum as corn-based ethanol is criticized for using agricultural outputs for fuel production. Among many lignocellulosic feedstocks, woodchips is viewed as one of the most promising feedstocks for producing liquid transportation fuels. The renewable and carbon neutral nature of the feedstocks, similar chemical and physical properties to gasoline, and the low infrastructure cost due to the availability of fuel flex vehicles and transportation networks make (ligno) cellulosic bioethanol an attractive option. An in-depth LCA of woodchips shows that harvesting and woodchips processing stage and transportation to the facility stage emit large amount of environmental pollutants compared to other life cycle stages of ethanol production. Our analysis also found that fossil fuel consumption and respiratory inorganic effects are the two most critical environmental impact categories in woodchips production. We have used Eco-indicator 99 based cradle-to-gate LCA method with a functional unit of 4 m3 of dry hardwood chips production.

Country
Australia
Related Organizations
Keywords

2300 Environmental Science, Woodchips, Sustainability and the Environment, 660, Bioethanol, Environmental impacts, 2105 Renewable Energy, Life cycle assessment, Biofuels, 1408 Strategy and Management, 2209 Industrial and Manufacturing Engineering

Powered by OpenAIRE graph
Found an issue? Give us feedback