Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-UPMC
Article . 2011
Data sources: HAL-UPMC
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An environmental evaluation of geopolymer based concrete production: reviewing current research trends

Authors: Habert, G.; d’Espinose de Lacaillerie, Jean-Baptiste; Roussel, N.;

An environmental evaluation of geopolymer based concrete production: reviewing current research trends

Abstract

In this study we carry out a detailed environmental evaluation of geopolymer concrete production using the Life Cycle Assessment methodology. The literature shows that the production of most standard types of geopolymer concrete has a slightly lower impact on global warming than standard Ordinary Portland Cement (OPC) concrete. Whilst our results confirm this they also show that the production of geopolymer concrete has a higher environmental impact regarding other impact categories than global warming. This is due to the heavy effects of the production of the sodium silicate solution. Geopolymer concrete made from fly ashes or granulated blast furnace slags based require less of the sodium silicate solution in order to be activated. They therefore have a lower environmental impact than geopolymer concrete made from pure metakaolin. However, when the production of fly ashes and granulated blast furnace slags is taken into account during the life cycle assessment (using either an economic or a mass allocation procedure), it appears that geopolymer concrete has a similar impact on global warming than standard concrete. This study highlights that future research and development in the field of geopolymer concrete technology should focus on two potential solutions. First of all the use of industrial waste that is not recyclable within other industries and secondly on the production of geopolymer concrete using a mix of blast furnace slag and activated clays. Furthermore geopolymer concrete production would gain from using waste material with a suitable Si/Al molar ratio in order to minimise the amount of sodium silicate solution used. Finally, by taking into account mix-design technology, which has already been developed for OPC concrete, the amount of binder required to produce a geopolymer concrete could be reduced.

Country
France
Keywords

[SPI] Engineering Sciences [physics], Allocation, Geopolymer, Waste, Life cycle Analysis, CO2 Emissions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.01%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 0.01%
Top 0.1%
Top 0.1%