Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electric bike sharing: simulation of user demand and system availability

Authors: David A. Jordan; Christopher R. Cherry; Lee D. Han; Shuguang Ji;

Electric bike sharing: simulation of user demand and system availability

Abstract

Abstract This paper describes the operational concepts and system requirements of a fully automated electric bike (e-bike) sharing system demonstrated through a pilot project at the University of Tennessee, Knoxville (UTK) campus (deployed in September 2011). This project is part of a movement to develop a sustainable transportation system, and is one of the green initiatives on UTK campus. E-bikes are more energy efficient and produce fewer greenhouse gas (GHG) emissions per person compared to other transport modes such as car, bus, and motorcycle. Without empirical demand information for an e-bike sharing system, we simulated the operations of such a system to gain insights during the design process before field deployment. The simulation exercise focused on three critical demand parameters – distributions of trip rates, trip lengths, and trip durations – and coupled them with supply parameters – number of e-bikes, number of swappable batteries, and battery recharging profiles. The primary purpose of these simulations is to evaluate the efficiency of an off-board battery recharging system, where the depleted battery is removed from an e-bike upon its return and inserted into one of the charging slots at the kiosk. We tested various scenarios with different number of batteries always maintaining an initial condition with the battery to e-bike ratio greater or equal to 1.0 to ensure battery availability. We applied empirical battery recharging rates and system operations rules to determine the number of e-bikes and batteries available under different potential demand situations, with a focus on optimizing the number of batteries to meet user demands. By adjusting input parameters, numerous scenarios were simulated for sensitivity analysis. Based on the results of the simulation, this paper presents a cost constrained e-bike sharing system design that can maintain a high level of system reliability (e-bike and battery availability) through optimal battery charging and distribution management. We found that high demand scenarios require multiple swappable batteries per e-bike to reasonably meet the maximum demand. Trip duration has the most influence on e-bike and battery availability, followed by trip rate, and then trip length.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 1%
Top 10%
Top 10%