

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection

Abstract This work presents a systematic approach toward the design of Organic Rankine Cycles (ORC) for the generation of power from multiple heat sources available at different temperature levels. The design problem is approached in a mixed-integer non-linear programming (MINLP) formulation where an inclusive and flexible ORC model is automatically evolved by a deterministic algorithm for global optimization. The basic building block of the model is the ORC cascade which consists of a heat extraction, a power generation, a condensation and a liquid pressurization section. The aim of the optimization is to determine the optimum number of ORC cascades, the structure of the heat exchanger network shared among different cascades, the operating conditions and the working fluid used in each cascade in order to identify an overall ORC structure that maximizes the power output. The approach is illustrated through a case study which indicates that a system of two waste heat sources is best exploited through two interconnected ORC utilizing different working fluids.
- University of Belgrade Serbia
- Πανεπιστήμιο Κρήτης – Τμήμα Βιολογίας Greece
- Centre for Research and Technology Hellas Greece
- Texas A&M University at Qatar Qatar
- University of Niš Serbia
Optimization, Organic Rankine Cycle, Working fluids, Pinch analysis, Multiple heat sources
Optimization, Organic Rankine Cycle, Working fluids, Pinch analysis, Multiple heat sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 65 download downloads 149 - 65views149downloads


