Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy and GHG reductions considering embodied impacts of retrofitting existing dwelling stock in Greater Melbourne

Authors: Greg Foliente; Zhengen Ren; Seongwon Seo;

Energy and GHG reductions considering embodied impacts of retrofitting existing dwelling stock in Greater Melbourne

Abstract

Abstract Energy retrofits of buildings usually ignore the amount of embodied energy and greenhouse gas (GHG) emissions needed to reduce the operating energy and related emissions. Focusing on the Greater Melbourne Area (GMA), the fastest growing capital city in Australia, this paper analyses the embodied impacts of different dwelling stock retrofit programs using a combination of a top-down and a bottom-up approach. We look at dwelling stocks that have been built before 2005 (i.e., before a minimum 5-star rating in energy performance was introduced in Australia) because these are expected to consume, without any retrofit or upgrade, about 34.9 TWh of energy or emit 8.57 × 106 t-CO2eq GHG for heating and cooling every year. Retrofit options to improve their energy star rating range from relatively cheap and easy options (e.g., draught sealing) to relatively expensive options (e.g. double glazing of windows). If all these buildings' energy efficiency is improved to the level of a 6-energy rated dwelling across the metropolitan region, we can save about 25.5 TWh per year in heating and cooling energy (or 6.25 × 106 t-CO2eq GHG each year). However, the retrofit program is estimated to consume 4.75 TWh of embodied energy, or have 1.89 × 106 t-CO2eq embodied GHG emissions. This is equivalent to 50% of the annual heating and cooling energy for the stock, or 81% of operational GHG emissions due to heating and cooling of existing dwellings. Considering the total life cycle energy and GHG emissions over the life of the buildings, although reducing the operational heating and cooling energy will remain to be the primary driver for action, the proportion of the embodied impacts’ contribution is expected to increase in the coming years especially as the implementation of net-zero energy/emissions concepts become more commonplace.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%