Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High pH buffer capacity biomass fly ash-based geopolymer spheres to boost methane yield in anaerobic digestion

Authors: Luís A.C. Tarelho; João A. Labrincha; Tânia Gameiro; Isabel Capela; Rui M. Novais; João Carvalheiras; Maria Paula Seabra;

High pH buffer capacity biomass fly ash-based geopolymer spheres to boost methane yield in anaerobic digestion

Abstract

Abstract Anaerobic digestion (AD) is a well-known technology for organic waste treatment with recognised environmental benefits including the generation of renewable energy (methane) and other added-value products. However, when applied to very easily biodegradable substrates, there is a need to mitigate the sudden pH drop, in order to improve the stability and feasibility of the process. In this work, and for the first time, waste-based geopolymer spheres were used as pH regulators in AD. The influence of the binder composition and content on the ability to control pH and on the methane yield was evaluated. The pH buffer capacity of the geopolymers can be controlled by the fly ash content in the composition, with higher contents leading to higher alkalis leaching and narrower pH fluctuation over time. The spheres promoted an excellent control of pH in batch operated anaerobic reactors (up to 70 days), which increases the stability and efficiency of the systems. The pH range in the reactor without spheres remained mostly between 3.84 and 4.38, preventing methane production, whereas in reactors with spheres pH was mostly kept between 6.45 and 7.94. The fast pH stabilization during the entire experiments, which occurred with fly ash-based geopolymers, stimulated the early methane production, demonstrating the huge potential of these innovative spheres as a pH buffering material. Using this innovative waste-based material, instead of commercial alkaline materials, enhances process simplicity (prevent the need for continuous pH adjustment) and sustainability, which may overcome the limitations associated with the existing applications such as the use of substrates with a high acidogenic potential and, therefore, contribute to the spread of AD technology.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 1%
Top 10%
Top 10%