
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimizing xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis by response surface methodology

Abstract Response surface methodology was used to optimize the xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis. The effects of independent variables on xylose yield were investigated, including reaction temperature (75–175 °C), reaction time (0–7.2 h), solution-to-feed ratio (4–20 mL/g), and phosphoric-acid concentration (0–6.67 wt%). Results indicated that the individual factor H3PO4 concentration and the interacting factors including temperature × time, temperature × H3PO4 concentration, and solution-to-feed ratio × H3PO4 concentration were all significant factors. Long reaction time (>5.4 h) and high phosphoric-acid concentration (>5%) showed little effect. Xylose yield increased with increasing temperature up to 125 °C. Higher phosphoric-acid concentration and larger solution-to-feed ratio also increased xylose yield. The coefficient of determination, corresponding analysis of variance, and parity plot indicated that the fitted model was appropriate for the acid-hydrolysis process. The maximum xylose production of 90.95% could be obtained with the reaction temperature of 106.7 °C, reaction time of 4.57 h, phosphoric-acid concentration 4.49 wt%, and solution-to-feed ratio of 12.51 mL/g.
- Fudan University China (People's Republic of)
- Shanghai Institute of Pollution Control and Ecological Security China (People's Republic of)
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
- Shanghai Institute of Pollution Control and Ecological Security China (People's Republic of)
- Fudan University China (People's Republic of)
660, Lignocellulosic biomass, Waste valorization, Biorefinery, Environmental benefit, Energy efficiency, Acid hydrolysis
660, Lignocellulosic biomass, Waste valorization, Biorefinery, Environmental benefit, Energy efficiency, Acid hydrolysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
