Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Life Cycle Assessment of hydrogen transport and distribution options

Authors: Petra Zapp; Markus Reuß; Jürgen-Friedrich Hake; Martin Robinius; Christina Wulf; Detlef Stolten; Thomas Grube;

Life Cycle Assessment of hydrogen transport and distribution options

Abstract

Abstract Renewably produced hydrogen offers a solution for mobility via fuel cell electric vehicles without emissions during driving. However, the hydrogen supply chain, from hydrogen production to the fueling station – incorporating seasonal storage and transport – varies in economic and environmental aspects depending on the technology used, as well as individual conditions, such as the distance between production and demand. Previous studies have focused on the economic aspects of varying technologies and elaborated application areas of each technology, while environmental issues were not specifically considered. To address this shortcoming, this paper presents a life cycle assessment of three supply chain architectures: (a) Liquid Organic Hydrogen Carriers (LOHCs hereinafter) for transport and storage; as well as (b) compressed hydrogen storage in salt caverns, together with pipelines; and (c) pressurized gas truck transport. The results of this study show that the pipeline solution has the least environmental impact with respect to most of the impact categories for all analyzed cases. Only for short distances, i.e., 100 km, is truck transport better in a few impact categories. When considering truck transport scenarios, LOHCs have higher environmental impacts than pressurized gas in seven out of 14 impact categories. Nevertheless, for longer distances, the difference is decreasing. The seasonal storage of hydrogen has almost no environmental influence, independent of the impact category, transport distance or hydrogen demand. In particular, strong scaling effects underlie the good performance of pipeline networks.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    115
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
115
Top 1%
Top 10%
Top 1%
bronze