Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Retrofit as a carbon sink: The carbon storage potentials of the EU housing stock

Authors: Pittau F.; Lumia G.; Heeren N.; Iannaccone G.; Habert G.;

Retrofit as a carbon sink: The carbon storage potentials of the EU housing stock

Abstract

Abstract In the next decades, a large share of residential buildings in EU-28 is expected to be renovated to achieve the 2 °C target requested by the Paris Agreement by 2050. Bio-based materials used for increasing the thermal insulation and temporary store carbon in construction elements might be a valuable opportunity that can contribute to accelerate the transition to a zero-carbon society. This article investigates the effect of massively storing carbon in bio-based construction products when used for the renovation of existing facades. Five alternative construction solutions were compared, three with a large amount of fast-growing biogenic material used as insulation, one with timber used for the frame and additional fibrewood as insulation, and the last one with synthetic insulation. A statistic-based Geocluster model was developed to predict the future material flow for building renovation in EU-28 and a dynamic life cycle assessment performed in order to verify the contribution of construction materials in reducing/increasing the carbon emissions over time. The results show that fast-growing biogenic materials have an increased potential to act as a carbon sink compared to timber. In particular, if straw is used as an insulation material, the capacity to store carbon from the atmosphere is effective in the short-term, which represents an important strategy towards the Paris climate Agreement goals.

Country
Italy
Keywords

Biogenic materials; Building renovation; Carbon capture and storage; Dynamic LCA; Europe; Geocluster

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    100
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
100
Top 1%
Top 10%
Top 1%
Green