
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Retrofit as a carbon sink: The carbon storage potentials of the EU housing stock

handle: 11311/1091641
Abstract In the next decades, a large share of residential buildings in EU-28 is expected to be renovated to achieve the 2 °C target requested by the Paris Agreement by 2050. Bio-based materials used for increasing the thermal insulation and temporary store carbon in construction elements might be a valuable opportunity that can contribute to accelerate the transition to a zero-carbon society. This article investigates the effect of massively storing carbon in bio-based construction products when used for the renovation of existing facades. Five alternative construction solutions were compared, three with a large amount of fast-growing biogenic material used as insulation, one with timber used for the frame and additional fibrewood as insulation, and the last one with synthetic insulation. A statistic-based Geocluster model was developed to predict the future material flow for building renovation in EU-28 and a dynamic life cycle assessment performed in order to verify the contribution of construction materials in reducing/increasing the carbon emissions over time. The results show that fast-growing biogenic materials have an increased potential to act as a carbon sink compared to timber. In particular, if straw is used as an insulation material, the capacity to store carbon from the atmosphere is effective in the short-term, which represents an important strategy towards the Paris climate Agreement goals.
- Institute of Construction and Infrastructure Management Switzerland
- Polytechnic University of Milan Italy
- ETH Zurich Switzerland
- Yale University United States
Biogenic materials; Building renovation; Carbon capture and storage; Dynamic LCA; Europe; Geocluster
Biogenic materials; Building renovation; Carbon capture and storage; Dynamic LCA; Europe; Geocluster
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).100 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
