Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cleaner P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel energy consumption forecasting model combining an optimized DGM (1, 1) model with interval grey numbers

Authors: Ye, Jing; Dang, Yaoguo; Song, Ding; Yang, Yingjie;

A novel energy consumption forecasting model combining an optimized DGM (1, 1) model with interval grey numbers

Abstract

Abstract Since energy consumption (EC) is becoming an important issue for sustainable development in the world, it has a practical significance to predict EC effectively. However, there are two main uncertainty factors affecting the accuracy of a region's EC prediction. Firstly, with the ongoing rapid changes in society, the consumption amounts can be non-smooth or even fluctuating during a long time period, which makes it difficult to investigate the sequence's trend in order to forecast. Secondly, in a given region, it is difficult to express the consumption amount as a real number, as there are different development levels in the region, which would be more suitably described as interval numbers. Most traditional prediction models for energy consumption forecasting deal with long-term real numbers. It is seldom found to discover research that focuses specifically on uncertain EC data. To this end, a novel energy consumption forecasting model has been established by expressing ECs in a region as interval grey numbers combining with the optimized discrete grey model (DGM(1,1)) in Grey System Theory (GST). To prove the effectiveness of the method, per capita annual electricity consumption in southern Jiangsu of China is selected as an example. The results show that the proposed model reveals the best accuracy for the short data sequences (the average fitting error is only 2.19% and the average three-step forecasting error is less than 4%) compared with three GM models and four classical statistical models. By extension, any fields of EC, such as petroleum consumption, natural gas consumption, can also be predicted using this novel model. As the sustained growth in EC of China's, it is of great significance to predict EC accurately to manage serious energy security and environmental pollution problems, as well as formulating relevant energy policies by the government.

Country
United Kingdom
Keywords

Energy consumption, Electricity, Grey system theory, Prediction, Interval numbers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 1%
Top 10%
Top 1%
bronze