
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Inter-provincial electricity transmissions’ co-benefit of national water savings in China

Inter-provincial electricity transmissions’ co-benefit of national water savings in China
Interprovincial electricity transmissions have been utilised in China to overcome the country's imbalanced social-economic development and resource endowments. A bottom-up technology-based model is adopted to estimate water uses in electricity-exporting provinces to produce the transmitted electricity as well as opportunistic water savings in the receiving provinces. The results highlight that, in 2014, on a national scale, electricity transmissions generated co-benefit of saving 20.1 billion m³ of water nationally due to the electric power sector's water productivity differences in the exporting and importing provinces. Taking regional water stresses into account, 10.98 billion m³ of national scarce water saving is realized through electricity transmissions. Moreover, electricity transmissions by China's proposed 12 future transmission lines are expected to use additional 3.22 billion m³ of water in the electricity-exporting provinces. As more water-intensive technologies, e.g. open-loop cooling, are more commonly utilised in the electricity-receiving provinces, a total amount of 16.97 billion m³ of water use will be avoided nationally. Water-use efficiency for power production should be improved in all regions. Transmitted power imports should still be encouraged in water-scarce regions to alleviate their water stresses while power exports should be shifted away from water-stressed regions to water-abundant ones. Energy transformation by utilising gas-fired capacity and hydropower in water-abundant Southern China could be advanced.
- China Agricultural University China (People's Republic of)
- Shenzhen University China (People's Republic of)
- Wageningen University & Research Netherlands
- Hohai University China (People's Republic of)
- Shenzhen University China (People's Republic of)
Water conservation, Co-benefit, Electricity transmission, Water-energy nexus
Water conservation, Co-benefit, Electricity transmission, Water-energy nexus
4 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
- 2007IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
