
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hierarchical predictive energy management of hybrid electric buses based on driver information

Abstract To improve the energy efficiency of hybrid electric city buses, a hierarchical predictive energy management strategy (HP-EMS) based on driver behavior and type is proposed in this paper. Within the model predictive control (MPC) framework, the k-Nearest Neighbor (kNN) method is applied to identify the driver type, and the deep neural network (DNN) is adopted to predict future speed based on the historical speed, driver type, and driver behavior. Combined with the city bus driving characteristics, the hierarchical strategy aims to reduce the frequent starts of the engine. The upper-level controller implements a rule-based strategy to limit the engine start-stop frequency. The lower-level controller uses dynamic programming (DP) to search for the best control strategy in the prediction horizon. Simulation results show that, compared with speed prediction without driver information, the new method can effectively improve the accuracy of future speed prediction, and RMSE between the prediction and measurement drops from 1.58 m/s to 1.45 m/s. The HP-EMS without driver information can reduce the number of engine starts by 30% while increase only 2% energy consumption compared with predictive energy management without hierarchical control. The paper also studies the benefits of considering driver behavior and type. The same HP-EMS controller is implemented with and without driver behavior and type. The one with the additional information reduces the energy consumption by 3.34% compared to the one without the information.
- Royal Institute of Technology Sweden
- Beijing Institute of Technology China (People's Republic of)
- Beijing Institute of Technology China (People's Republic of)
- Beijing Information Science & Technology University China (People's Republic of)
- Beijing Information Science & Technology University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).31 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
