Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SLU publication data...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cleaner Production
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cleaner Production
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Environmental impact and cost assessment of a novel lignin production method

Authors: Pooja Yadav; Dimitris Athanassiadis; Io Antonopoulou; Ulrika Rova; Paul Christakopoulos; Mats Tysklind; Leonidas Matsakas;

Environmental impact and cost assessment of a novel lignin production method

Abstract

Abstract The oil scarcity and the rise in earth temperature have elevated the interest in lignocellulosic biorefineries. Lignin has high potential to be used in various applications including the production of biomaterials and transportation fuels. Among the different sources of lignin, organosolv lignin has the advantage of being sulphur-free and of low ash content compared to other types of industrial lignin. The present study focuses on cradle-to-gate life cycle and cost assessment of a novel organosolv lignin production process from spruce bark. The system boundary included production of tannin, lignin from spruce bark and handling of waste including all the inputs (material and energy) and outputs (emissions) in the process. Baseline scenario and scenarios S1 and S2 were compared to identify the most environmentally and economically suitable scenario. The baseline scenario is lignin production with co-production of tannin and tannin free bark (TFB) from spruce bark; scenario S1 is lignin production from TFB; and scenario S2 is lignin production from TFB with mass allocation. The functional unit was 1 kg lignin produced and ReCiPe 2016 Midpoint (H) method was used for the environmental impact assessment. The results showed that the baseline scenario had higher global warming potential (GWP) (2.14 kg CO2eq.) and total cost (1.959 €/kg) than S1 (1.39 kg CO2 eq. and 1.377 €/kg respectively) and S2 (0.23 kg CO2eq. and 0.998 €/kg respectively) scenarios. The results of sensitivity analysis showed that the use of bioethanol instead of ethanol reduced the burden on GWP but increased the burden on the land use impact category.

Country
Sweden
Keywords

660, Tannin, Other Environmental Engineering, Environmental Sciences (social aspects to be 507), Lignin, Life cycle cost, Bark, Life cycle assessment, Renewable biofuel, Annan naturresursteknik

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 1%
Top 10%
Top 1%
Green
hybrid