Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The case study of a photovoltaic plant located at the university of L’Aquila: An economic analysis

Authors: Filippo de Monte; Idiano D’Adamo; Idiano D’Adamo; Massimo Gastaldi; Francesco Ferella;

The case study of a photovoltaic plant located at the university of L’Aquila: An economic analysis

Abstract

Abstract Solar energy has contributed significantly to the energy transition towards a low carbon society. Public offices – including universities – are being called to participate in the solar energy transition, as the availability of their rooftops represents an opportunity. The present study aimed at evaluating the economic feasibility of a photovoltaic (PV) plant at the University of L’Aquila, approximately 10 years after an earthquake devastated the region. The reconstruction process is ongoing, and a solar PV plant could potentially move the city in a sustainable direction. The development of sustainability models requires the economic verification of relevant projects and a complete list of indicators for decision-makers. The present work found that a 210 kW PV plant at the University of L’Aquila would reduce emissions by 184.9 t CO2eq/year and generate 1500 € profits for each kW installed; and a 115 kW PV plant would reduce emissions by 101.5 t CO2eq/year and generate profits of 1370 € for each kW installed. The analysis of alternative scenarios gave solidity to the results, confirming the pivotal role of the share of self-consumed energy. Level of insolation and plant size were also found to significantly influence economic performance. Finally, the adoption of a bonus to encourage the production and self-consumption of energy may increase investors’ attention towards environmental issues.

Country
Italy
Keywords

Economic analysis, Photovoltaic, Plant size, Public office, Sensitivity analysis, Subsidies, Economic analysis; Photovoltaic; Plant size; Public office; Sensitivity analysis; Subsidies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%