Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tracking embodied water uses and GHG emissions along Chinese supply chains

Authors: Li Zeng; ChengHe Guan; ChengHe Guan; ChengHe Guan; Bo Zhang; Bo Zhang; Bin Chen; +1 Authors

Tracking embodied water uses and GHG emissions along Chinese supply chains

Abstract

Abstract China is facing both serious water scarcity and climate change challenges simultaneously. There is an urgent need to identify the synergies between water conservation and greenhouse gas (GHG) emission mitigation. This paper aims to trace the embodied water uses and GHG emissions (i.e., CO2, CH4 and N2O) via China's domestic supply chains in 2012 and to explore their common important paths for driving the water withdrawals and the emissions of GHGs using the environmentally-extended input-output analysis and the structural path analysis. The results show a significant coupling between the embodied water uses and the embodied emissions of CO2, CH4 and N2O in the supply chains on a national scale. The water-GHG nexus relationships from the consumption-side are systematically revealed in terms of industrial sectors, final demands and supply chain paths. The top 20 nexus paths ranked by water together accounted for 37.40% of the national total water withdrawals. Ranked by GHGs, the proportions were 22.46% of the total GHG emissions. Synergies in saving water resources and mitigating the emissions of CO2, CH4 and N2O can be achieved through controlling important supply chain paths and critical transmission sectors. The highly interlinked nature of water and climate change issues requires comprehensive solutions to reduce future freshwater and GHG emission needs to maintain sustained economic growth in China.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%