Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nanofluids for flat plate solar collectors: Fundamentals and applications

Authors: Omer A. Alawi; Haslinda Mohamed Kamar; A.R. Mallah; Hussein A. Mohammed; S.N. Kazi; Nor Azwadi Che Sidik; Gholamhassan Najafi;

Nanofluids for flat plate solar collectors: Fundamentals and applications

Abstract

Abstract Among different sources of renewable energy, solar energy is widely used almost exclusively because of its ease of availability and its lowest environmental effects. The most commonly used solar collectors are the flat plate solar collectors (FPSCs). However, they are less powerful (low capacity to convert solar energy to thermal energy). It is possible to classify the use of nanofluid on FPSCs as an efficient way to boost the solar collectors’ performance. In this paper, studies on metal oxides, non-metal oxides, solid metals, semiconductor nanomaterials, carbon nanostructured, and nanocomposite nanofluids used as heat transfer fluids (HTFs) within FPSCs are examined sequentially. Various parameters affecting the FPSC’s thermal efficiency, such as nanoparticle type, nanoparticle concentration, nanoparticle size/shape, solar radiance, and mass flow rate, are extensively analyzed. Studies have also compared various types of single nanofluids or mixture nanofluids with FPSCs under the same operating conditions. It is found that the use of carbon-based nanofluids compared to metal oxides of nanofluids under the same conditions has resulted in a major improvement in the energetic and exergetic performance of the FPSC. Furthermore, the reviewed research revealed that there is a tremendous opportunity to achieve the commercial application of carbon-based nanofluid FPSC. The obstacles and opportunities for further study are also highlighted.

Countries
Malaysia, Australia, Australia
Keywords

Nanofluids, Civil and Environmental Engineering, Energy efficiency, Engineering, 670, Exergy efficiency, Flat-plate solar collectors (FPSCs), TJ Mechanical engineering and machinery

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 1%
Top 10%
Top 1%