Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repositorio instituc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Uncertainty-aware energy management strategies for PV-assisted refuelling stations with onsite hydrogen generation

Authors: Marcos Tostado-Véliz; Ali Asghar Ghadimi; Mohammad Reza Miveh; Mohammad Bayat; Francisco Jurado;

Uncertainty-aware energy management strategies for PV-assisted refuelling stations with onsite hydrogen generation

Abstract

One of the main barriers for the wide penetration of fuel cell electric vehicles is the lack of proper infrastructures for hydrogen transportation that hinders the implantation of refuelling stations. This barrier could be overcome by deploying onsite hydrogen generators based on mature electrolysis and hydrogen storage technologies. This way, the necessity of hydrogen transportation is avoided. In addition, electrolysers can be onsite supplied by means of renewable generators like photovoltaic panels, while the produced hydrogen can also be destined to generate electricity through fuel cells thus obtaining a monetary revenue. Thereby, the economy of the system may be improved in order to make viable this kind of infrastructures. However, the optimal coordination of the different assets is challenging and requires the use of energy management tools to pursue the optimal performance of the installation. In this kind of infrastructures, the energy management problem is performed under substantial uncertainties; moreover, these unknown parameters have a very different character. Thus, while energy pricing and renewable generation can be forecasted using conventional techniques, refuelling demand is highly unpredictable. To this end, this paper proposes a novel stochastic-interval model for the optimal scheduling of photovoltaic-assisted refuelling stations. The new proposal uses interval notation to model the inherent uncertainty of renewable generation and energy pricing, while the vehicle demand is modelled using a more suitable approach based on scenarios. In this regard, a comprehensive stochastic model for fuel cell electric vehicles is developed, which is based on reported driving behaviour and common characteristics of commercial vehicles. To solve the problem subjected to uncertainties, an iterative solution methodology is developed which allows adopting risk-seeker and risk-averse operational strategies. A case study is analysed to validate the new proposal and discussing the importance of the different economic activities that can be exploited in refuelling stations. Results reveal the importance of selling energy to the grid in order to complement the revenues obtained from refuelling; however, this process is highly impacted by uncertainties and the operational strategy, observing variations up to 50% in the total profit depending on the strategy adopted.

Related Organizations
Keywords

330, Fuel cell electric vehicles, Uncertainty, Robust optimization, Photovoltaic, 620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Green